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The measurement of a surface profile by using High Speed Electronic Speckle Pattern Interferometry (HS-ESPI) is 

presented. It is realized by the temporal phase shifting algorithm proposed by Carré. The HS-ESPI is configured to 4000 

frames per second (fps). Traditionally, temporal phase shifting techniques employed piezoelectric components to retrieve 

the optical phase of the measured object. In this work the retrieved optical phase comes directly from the object itself which 

is under a vibration condition. The measurement is done without the need of any piezoelectric component, any electronic 

synchronization or any other external component. 
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1. Introduction 
 

Phase measurement techniques have been used to 

directly measure wavefront phase in an interferometer as 

long as a relative difference between the object beam and 

the reference beam exists. Those techniques which take 

the phase data sequentially are called Temporal Phase 

Measurement and those which take the phase data 

simultaneously are known as Spatial Phase Measurements 

[1]. To determine phase, electronic and analytic techniques 

are used. The analytic techniques have become more 

popular between researches because of the use of a 

computer to process the information. Different analytical 

algorithms have been published along the time working 

with a set of three, four or five recorded fringe patterns 

with a phase shift of /2, however, there have been 

developed algorithms that are independent of the amount 

of phase shift [2-9] where their applications result more 

interesting for measurements done in different fields of 

industry. Recent works have reported new methods that 

describe new algorithms for phase recovery with just one 

or two steps [10-15]. The application of these algorithms 

requires of a phase change in the reference beam by means 

of a titled mirror or another transducer. In this work, the 

change of phase comes directly from the excited object 

due to a natural vibration mode. The Carré algorithm, 

established in 1966 [2], is applied to a selected group of 

fringe patterns coming from the HS-ESPI system, where a 

continuous wave laser illumination and a high speed 

camera are used. 

2. Experimental setup and object description 

 

The optical set-up for this experiment is an out-of-

plane sensitive ESPI, shown in Fig. 1. A continuous beam 

coming from a laser source with a maximum power source 

of 6 Watts and 532 nm wavelength, is divided by the beam 

splitter (BS1), into an object (IO) and a reference (IR) 

beams. MO1 is a 10x microscope objective that projects 

the object beam over the target. MO2 is a 10x microscope 

objective that projects the reference beam over the camera 

sensor trough a beam splitter, BS2, which also recombines 

the reflected intensity coming from the object into the 

camera, which is a CMOS NAC’s Memrecam fx 6000. For 

this work, in order to get the most possible information of 

the event to measure, the laser is set to a power of 5.5 

Watts and the CMOS camera is set to an exposure time of 

4000 frames per second leaving the shutter permanently 

open. It was seen that there is a relation between the power 

of the laser and the exposure time of the camera, if more 

frames per second are recorded, more power is needed.  
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Fig. 1. Optical set up for a high-speed ESPI system. Beam splitter 1 is a 70/30, beam splitter 2 is a 50/50, microscope objectives are 

10x. The material properties of the 6061 aluminum alloy plate are mass density = 2700 kg/m3, Young’s modulus E = 70 GPa and the 

Poisson ratio  = 0.33, according to the aluminum standards and data 2006 Metric SI by the Aluminum Association Inc. 

 

 
The rectangular plate is clamped in its four edges with 

a distributed load. The plate is excited at its first modal 

vibration which was found at 320 Hz. The excitation is 

produced by an external sine wave generator plugged to a 

conventional speaker placed behind the plate. L1 has a 

focal length of 75mm and helps the system to capture the 

full area of the plate and record the evolution of the 

vibration by the high-speed CMOS camera.  

The rectangular plate under vibration has been studied 

by [16-20] where it is found that the classical differential 

equation of motion for the transverse displacement or 

deflection function u(x, y, t) of an isotropic homogeneous 

thin plate is given by the fourth order differential equation 
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 where c is an 

elastic constant that depends on the mechanical properties 

of the material, and p is the distributed load. The 

deflection function, u(x, y, t), must satisfy the border 

conditions u = 0 for all t > 0.
 
 

In the simpler case of a plate with its edges simply 

supported, the bending moments are zero and it is possible 

to express the transverse displacement as a product of sine 

functions, as it is written in equation (2), where a 

corresponds to the length and b to the width for each 

horizontal and vertical vibration modal, w and z 

respectively. According to [21, 22], it has relied on the 

assumption that, far from the boundaries, a clamped plate 

has similar mode shapes to those of a simply supported 

plate.  
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In which the constant C must be chosen so as to 

satisfy Eq. (1) where p must be written as 
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in which p0 represents the intensity of the load at the 

center of the plate.   

Fig. 2 shows the principal numerical analysis of the 

rectangular plate through a simulation with a = 19 and b = 

14. The deformed profile of the vibrating plate on its first 

natural mode of frequency fits a parabolic function. 

 

 

 

 

 

 

 

LASER CAMERA 

BS1 BS2 

MO1 

MO2 

L1 
OFC 

RECTANGULAR PLATE 
1mm THICKNESS 



Application of the carré algorithm and high speed interferometer technique for fast surface profile measurement            187 

 

 

 

 
a 

 
b 

 
Fig. 2. (a) Numerical model for a modal vibrating 

rectangular plate with length, a = 19, and width, b = 14, 

the z-axis represents the normalized deflection of the 

plate, (b) profile of the dynamic deformation of the plate. 

 

 
3. Theoretical description 
 

It is observed from Fig. 1 that the laser source is 

divided into 2 beams, IR and IO. Both beams are 

recombined on the CMOS sensor. This recombination can 

be written by the expression   

             

      
  cos21 RORO IIIII               (4)  

 

where  is the subtraction of the phase of the wavefront 

of the object beam, O , and the phase of the wavefront of 

the reference beam, R . 

Once the surface of the object is deformed, a change 

of phase, , is introduced as follows, 
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The subtraction of intensities of the input images 1I  

and 2I  can be given by 
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Eq. (6) represents a fringe pattern that can be 

numerically processed to obtain a phase map for 

measuring the deformation of the object. A detailed theory 

of the operation of the electronic speckle pattern 

interferometer can be found in [23, 24]. 

When a sinusoidal signal produces an oscillated 

vibration on the surface of the object, the phase change 

  can be expressed as 

tA 



 sin

4
                         (7) 

where   is the wavelength of a laser, A  is the amplitude 

of the signal and   is the natural frequency of vibration. 

This equation indicates that the deformation on the 

object’s surface will change cyclically going through 

minimum and maximum values of the amplitude A. For 

this case, it is considered that with the HS-ESPI system 

there are more than two intensities that can be stored by 

the sensor while the object is under deformation, in this 

specific case, 4000 intensities going from

nIIII .,..,,, 321 , with a phase change going between 0  

and 2 once and over until covering 12 cycles of 

vibrations as it was described above.  

The number of intensity patterns stored in a complete 

vibration cycle will depend on the natural frequency, , 

and on the exposure time of the CMOS camera,  .  

 

In this case, the intensity patterns stored by the 

camera can be written as 
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where m is the number of fringe patterns that can be 

obtained by the relation between the exposure time of the 

camera and the vibration frequency of the plate, it can be 

calculated from  1int  m  and 

mn ,...,6,5,4,3,2,1 . The integer function int[ ] 

gives an integer number of fringe patterns that can be used 

in the proposed method and allows the selection of the 

fringe patterns with the same amount of phase shifts 

between them.         

The subtraction of intensities of the input images 1I  

and 2I  to nI   can be given by 
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Each of these subtractions represents a fringe pattern. 

With this information, the reconstruction of the 

deformation during a complete vibration cycle of the 

object can be done. 

One of the most important considerations of this 

technique is that the measurement can be started at any 

time; it is only needed to select an intensity pattern and 

make a subtraction of the following consecutive intensity 
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patterns to it. It is not need of any kind of synchronization 

or any kind of carrier to do the measurement.  

Some of the phase shifting techniques requires a 

particular and exact amount of phase change between 

consecutive intensity measurements in order to apply 

specific algorithms for phase calculation. Carré [2] 

presented in 1966 a technique of phase measurement 

which is independent of the amount of phase shift between 

consecutive measurements, yielding four equations, 
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where the phase shift, , is assumed to be linear. I0 is the 

background intensity,  is the fringe modulation, (x,y) is 

the phase distribution to be measured. From these 

equations, the phase shift can be calculated by means of, 
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where the phase at each point is calculated by 
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Combining the above two equations, the phase 

module  can be calculated by, 
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Equation (16) determines the phase module  at each 

point in the interferogram without phase calibration errors. 

The fringe modulation for this technique is 
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4. Simulating results 
 

For this experiment, the vibration frequency of the 

plate is  = 320Hz and the CMOS camera is set to an 

exposure time,   =  4000fps, so, there are 12 intensity 

patterns recorded for a complete cycle of vibration and 12 

complete cycles recorded in 4000 fps. All of them must 

satisfy the theoretical deformation description fitting a 

parabolic function as it was described above. In this work, 

only one cycle is considered in order to demonstrate the 

application of the Carré algorithm.  

The intensity patterns are separated from each other 

by a constant phase shift, . The fringe patterns obtained 

by the subtraction of the intensity patterns are shown in 

Fig. 3. The figure represents a complete cycle of vibrating 

evolution where the maximum deformation of the plate is 

located in the center of it. 

 

 

 
 

Fig. 3. Full vibration cycle and its theoretical fringe 

pattern evolution. The y-axis measures the relative 

deformation   amplitude   and   the   x - axis   shows    the 

     interferograms at different phase and time positions. 

 

 
According to the Carré technique, a fringe pattern is 

phase shifted by, for example, a tilting a mirror to get 4 

different fringe patterns to be applied in equations (10) to 

(13), in other words, the tilting mirror changes the phase to 

 equals to 0, /2,  and 3/2. For this experiment, the 

phase change comes from a surface displacement due to 

equation (7), in this case, it can be considered that 
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 tA , respectively. This 

indicates that a phase change as a result of a mirror 

position is equivalent to the optical phase change coming 

from a displacement of the surface of the plate. With this 

assumption, it is possible to detect 4 fringe patterns 

coming from only one cycle of vibration and applied a 

well-known algorithm in order to measure a phase. This is 

because the HS-ESPI allows to measure the evolution of 

the vibration cycle along the time with several samples, 

which can be interpreted as a phase stepping technique, as 

shown in Fig. 4. 
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Fig. 4. Phase stepping in HS-ESPI in a cycle of vibration a) x-axis is the phase shift (time) and y-axis is the intensity change coming 

from the displacement of the plate; b) equivalent interpretation of phase stepping with HS-ESPI. X-axis is the time in ms and y-axis is 

the phase change. 

 

 
According to Fig. 3, there are 11 fringe patterns in a 

complete cycle of vibration. Each fringe pattern is formed  

at a specific time within the cycle as shown in Fig. 5.

 

 
 

Fig. 5. Fringes patterns contended in a cycle of vibration. 

 
The selected fringe patterns along the complete 

vibration cycle are shown in Fig. 6. 

 

 

  

  

Fig. 6. 4 images are selected for applying the Carré’s 

algorithm. Each image corresponds to 0.568, 1.42, 2.272  

                          and 3.125 ms respectively.   

 

 
For this experiment these fringe patterns are separated 

from each other by an amount of phase  = 6/11 = 

98.18°. 

Once the fringes are processed by eq. (16), the 

resulted wrapped phase is then computationally 

unwrapped by the weighted multigrid method [25]. The 

unwrapped phase map and the profile along the center of 

it, in the x-axis direction, are shown in Fig. 7. 

   
a  

    
b 

                                                                     

Fig. 7. a) Recovered phase of the rectangular plate under 

deformation. x and y axis are pixels; b) profile of the 

deformation of the vibrating plate that comes from the 

processing of 4 selected fringe patterns with an amount 

of phase =98.18° (=6/11) between each other, x-axis  

                   is in pixels and y-axis is in radians. 

unwrapped phase
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The computational and mathematical processing for 

this work is done with a software [26] based on Matlab 

instructions. 

According to [27], it is important to mention that the 

four fringe patterns have to be selected along the 

deformation and must keep the same amount of phase 

shifts between each other. Otherwise, the method wouldn’t 

work properly. 

 

 

5. Experimental results 
 

The experimental fringe patterns coming by the HS-

ESPI are shown in Fig. 8. There is a very visible noise that 

looks like a group of horizontal lines. This phenomenon is 

due to manufacturing problems specifically for this model 

camera. According to the manufacturer, this error was 

corrected for subsequent versions. The camera’s version is 

the NAC’s Memrecam fx 6000, however, this 

phenomenon doesn’t affect the measurement because it is 

a constant noise and not a phase changing.\ 

 

 
 

Fig. 8. Full vibration cycle and its fringe pattern evolution.  

The images are in a gray level scale at 8 bits. 

 
 

The four fringe patterns selected to be processed with 

the Carré algorithm with an amount of phase of 98.18° are: 

 

 

  

  
 

Fig. 9. The selected fringe patterns to be processed by 

eqn. (16). The images correspond to a phase changes of  

                         4/11, 10/11, 16/11, 2. 

 
Once the eqn. (16) is applied, the resulted wrapped 

phase is then unwrapped by the weighted multigrid 

method. The resulted unwrapped phase map is shown in 

Fig. 10 as well as the profile along the center of it in the  

y-axis direction. 

 

        
a 

 
   b                                                         

 
c 

 
d 

                                                        

Fig. 10. (a) Recovered unwrapped phase of the 

experimental work; (b) Experimental profile of the 

deformation of the rectangular plate that comes from the 

processing of 4 selected fringe patterns with an amount 

of phase =98.18° between each other. x-axis is in pixels 

and y-axis is in radians; (c) 3D graph of the results 

obtained; (d)  comparative  plot  between  the  theoretical  

                          and experimental profile. 
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For this experiment, the adjustment of the profile 

shown in Fig. 10 (d) to a parabolic function is equal to 

0.9983. It means that the experimental profile measured on 

this work fits the theoretical modelling described above. 

This result indicates that the combination of Carré and HS-

ESPI methods works without the need of any 

synchronization between techniques and without the need 

of a mechanical tilt of a component for shifting an amount 

of phase in the experiment. 

The mechanical amplitude of the deformation for the 

profile that is shown in Fig. 10 (b) can be calculated by 

means of equation (7), so, the deformation on the 

maximum point of the experimental profile measured is 

equal to 0.727m. 

Different vibration frequency will involve a different 

exposure time on the camera. We work at 320Hz [28], 

which is the first vibration natural mode of the rectangular 

plate. The relation between the exposure time and the 

vibration frequency gives enough fringe patterns that can 

be used in the proposed method and ensure that we can 

measure a complete vibration cycle.  

 

 

5. Conclusions 
 

A big advantage of Carré technique refers to the not 

need of phase shift calibration, in this way, the HS-ESPI 

system working together to the Carré technique is a very 

fast way to measure mechanical deformation from optical 

phase changes coming from a vibrating object. The 

introduction of a high speed camera to an ESPI set up 

eliminates the need for tilted mirrors or piezoelectric 

devices to change the phase and also eliminates the need 

of electronically synchronization. High speed cameras and 

continuous wave lasers together with optical 

interferometer systems give a very strong way for 

measuring real time vibrations with the only need of a 

complete vibration cycle; its application in industry can be 

a very interesting solution for complex measurements. The 

system records a sequence of 4000 fps, which can be used 

for applying some of the phase shifting techniques 

proposed from many authors and can be useful to 

characterize the complete vibration evolution of a dynamic 

event. 
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